Abstract

We study natural examples of binary channels with synchronization errors. These include the duplication channel, which independently outputs a given bit once or twice, and geometric channels that repeat a given bit according to a geometric rule, with or without the possibility of bit deletion. We apply the general framework of Cheraghchi (Journal of the ACM, 2019) to obtain sharp analytical upper bounds on the capacity of these channels. Previously, upper bounds were known via numerical computations involving the computation of finite approximations of the channels by a computer and then using the obtained numerical results to upper bound the actual capacity. While leading to sharp numerical results, further progress on the full understanding of the channel capacity inherently remains elusive using such methods. Our results can be regarded as a major step toward a complete understanding of the capacity curves. Quantitatively, our upper bounds sharply approach, and in some cases surpass, the bounds that were previously only known by purely numerical methods. Among our results, we notably give a completely analytical proof that, when the number of repetitions per bit is geometric (supported on the non-negative integers) with mean growing to infinity, the channel capacity remains substantially bounded away from 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call