Abstract

In this paper, we exploit the formal equivalence of the Solution Manifold of two distinct physical systems to create enough symmetries so as to characterize them by Noether Invariants, thus favoring their future quantization. In so doing, we somehow generalize the Arnold Transformation for non-necessarily linear systems. Very particularly, this algorithm applies to the case of the motion on the de Sitter space-time providing a finite-dimensional algebra generalizing the Heisenberg–Weyl algebra globally. In this case, the basic (contact) symmetry is imported from the motion of a (non-relativistic) particle on the sphere [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.