Abstract

ObjectiveThis study aims to develop and evaluate a semi-automated workflow using natural language processing (NLP) for sharing positive patient feedback with radiology staff, assessing its efficiency and impact on radiology staff morale. MethodsThe HIPAA-compliant, institutional review board–waived implementation study was conducted from April 2022 to June 2023 and introduced a Patient Praises program to distribute positive patient feedback to radiology staff collected from patient surveys. The study transitioned from an initial manual workflow to a hybrid process using an NLP model trained on 1,034 annotated comments and validated on 260 holdout reports. The times to generate Patient Praises e-mails were compared between manual and hybrid workflows. Impact of Patient Praises on radiology staff was measured using a four-question Likert scale survey and an open text feedback box. Kruskal-Wallis test and post hoc Dunn’s test were performed to evaluate differences in time for different workflows. ResultsFrom April 2022 to June 2023, the radiology department received 10,643 patient surveys. Of those surveys, 95.6% contained positive comments, with 9.6% (n = 978) shared as Patient Praises to staff. After implementation of the hybrid workflow in March 2023, 45.8% of Patient Praises were sent through the hybrid workflow and 54.2% were sent manually. Time efficiency analysis on 30-case subsets revealed that the hybrid workflow without edits was the most efficient, taking a median of 0.7 min per case. A high proportion of staff found the praises made them feel appreciated (94%) and valued (90%) responding with a 5/5 agreement on 5-point Likert scale responses. ConclusionA hybrid workflow incorporating NLP significantly improves time efficiency for the Patient Praises program while increasing feelings of acknowledgment and value among staff.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.