Abstract

Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant–fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant–mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant–fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant–fungal associations. Such insights into the overall structure of belowground plant–fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species in natural communities.

Highlights

  • Plants interact with various types of mutualistic animals and microbes, and plant community dynamics depend on the nature of these plant–partner interactions [1,2,3]

  • We evaluated how dominant and subordinate plant species shared diverse clades of mycorrhizal and rootendophytic fungi within a local community by statistically evaluating fungal local host preference

  • The entire structure of belowground plant–fungal associations is properly described as a continuity that spans from the random sharing of fungal symbionts within a plant community to complete compartmentalization by mycorrhizal type

Read more

Summary

Introduction

Plants interact with various types of mutualistic animals and microbes, and plant community dynamics depend on the nature of these plant–partner interactions [1,2,3]. Since the early stage of land colonization 460 million years ago, most terrestrial plants have hosted mycorrhizal fungal symbionts in their roots [15,16,17]. These mycorrhizal fungi provide host plants with soil nutrients and water, thereby increasing the growth or survival rates of their hosts [12,18,19]. Because the sharing of root-associated fungi could facilitate the coexistence of plant species [24,25], studies that clarify how diverse clades of root-associated fungi are shared within a plant community are essential to our understanding of plant community dynamics and stability

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.