Abstract

Meeting food/wood demands with increasing human population and per-capita consumption is a pressing conservation issue, and is often framed as a choice between land sparing and land sharing. Although most empirical studies comparing the efficacy of land sparing and sharing supported land sparing, land sharing may be more efficient if its performance is tested by rigorous experimental design and habitat structures providing crucial resources for various species-keystone structures-are clearly involved. We launched a manipulative experiment to retain naturally regenerated broad-leaved trees when harvesting conifer plantations in central Hokkaido, northern Japan. We surveyed birds in harvested treatments, unharvested plantation controls, and natural forest references 1-year before the harvest and for three consecutive postharvest years. We developed a hierarchical community model separating abundance and space use (territorial proportion overlapping treatment plots) subject to imperfect detection to assess population consequences of retention harvesting. Application of the model to our data showed that retaining some broad-leaved trees increased the total abundance of forest birds over the harvest rotation cycle. Specifically, a preharvest survey showed that the amount of broad-leaved trees increased forest bird abundance in a concave manner (i.e., in the form of diminishing returns). After harvesting, a small amount of retained broad-leaved trees mitigated negative harvesting impacts on abundance, although retention harvesting reduced the space use. Nevertheless, positive retention effects on the postharvest bird density as the product of abundance and space use exhibited a concave form. Thus, small profit reductions were shown to yield large increases in forest bird abundance. The difference in bird abundance between clearcutting and low amounts of broad-leaved tree retention increased slightly from the first to second postharvesting years. We conclude that retaining a small amount of broad-leaved trees may be a cost-effective on-site conservation approach for the management of conifer plantations. The retention of 20-30 broad-leaved trees per ha may be sufficient to maintain higher forest bird abundance than clearcutting over the rotation cycle. Retention approaches can be incorporated into management systems using certification schemes and best management practices. Developing an awareness of the roles and values of naturally regenerated trees is needed to diversify plantations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call