Abstract
Based on a previous work on scenarios where the Standard Model and dark matter particles share a common asymmetry through effective operators at early time in the Universe and later on decouple from each other (not care), in this work, we study in detail the collider phenomenology of these scenarios. In particular, we use the experimental results from the Large Hadron Collider (LHC) to constrain the viable parameter space. Besides effective operators, we also constrain the parameter space of some representative ultraviolet complete models with experimental results from both the LHC and the Large Electron-Positron Collider. Specifically, we use measurements related to jets + missing transverse energy (MET), di-jets and photon + MET. In the case of ultraviolet models, depending on the assumptions on the couplings and masses of mediators, the derived constraints can become more or less stringent. We consider also the situation where one of the mediators has mass below 100 GeV, in this case we use the ultraviolet model to construct a new effective operator responsible for the sharing of the asymmetry and study its phenomenology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.