Abstract
The neuronal networks in spinal cord can produce a diverse array of motor behaviors. In aquatic vertebrates such as fishes and tadpoles, these include escape behaviors, swimming across a range of speeds, and struggling. We addressed the question of whether these behaviors are accomplished by a shared set of spinal interneurons activated in different patterns or, instead, involve specialized spinal interneurons that may shape the motor output to produce particular behaviors. We used larval zebrafish because they are capable of several distinct axial motor behaviors using a common periphery and a relatively small set of spinal neurons, easing the task of exploring the extent to which cell types are specialized for particular motor patterns. We performed targeted in vivo whole-cell patch recordings in 3 d post fertilization larvae to reveal the activity pattern of four commissural glycinergic interneuron types during escape, swimming and struggling behaviors. While some neuronal classes were shared among different motor patterns, we found others that were active only during a single one. These specialized neurons had morphological and functional properties consistent with a role in shaping key features of the motor behavior in which they were active. Our results, in combination with other evidence from excitatory interneurons, support the idea that patterns of activity in a core network of shared spinal neurons may be shaped by more specialized interneurons to produce an assortment of motor behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.