Abstract
Particle shape plays a vital role in granular material behavior, but simulations with realistic particle shapes are uncommon due to significant computational demands of complex particle geometry representation. In this work, BLOKS3D, a polyhedral Discrete Element Method (DEM) and impulse-based DEM (iDEM) codes are parallelized to enable large-scale simulations with realistic particle shapes on readily accessible multi-core machines. Data structures used in the original codes were redesigned and optimized, leading to 15% improved performance of the original serial codes. New parallel algorithms were developed resulting in 28 times performance improvement on a 48-core (quad-CPU) shared memory system over single core serial algorithm. The parallelized 3D polyhedral DEM and iDEM were applied to series of column collapse simulations. The codes successfully reproduced the runout distance in granular column collapse experiments. The particle force data from both parallelized DEM and iDEM matched data from the serial algorithm. The new parallel implementation of iDEM was then demonstrated with unprecedented 52 million 3D polyhedral particles simulations. This work will benefit future granular material studies with the newly introduced capacity to run large-scale simulations with realistic particle shapes on shared memory hardware platforms readily accessible to many engineers and researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.