Abstract

IntroductionWe describe findings from a large study that provide empirical support for the emerging construct of cognitive frailty and put forth a theoretical framework that may advance the future study of complex aging conditions. While cognitive impairment and physical frailty have long been studied as separate constructs, recent studies suggest they share common etiologies. We aimed to create a population predictive model to gain an understanding of the underlying biological mechanisms for the relationship between physical frailty and cognitive impairment.MethodsData were obtained from the longitudinal “Invecchaiare in Chianti” (Aging in Chianti, InCHIANTI Study) with a representative sample (n = 1453) of older adults from two small towns in Tuscany, Italy. Our previous work informed the candidate 132 single nucleotide polymorphisms (SNPs) and 155 protein biomarkers we tested in association with clinical outcomes using a tree boosting, machine learning (ML) technique for supervised learning analysis.ResultsWe developed two highly accurate predictive models, with a Model I area under the curve (AUC) of 0.88 (95% confidence interval [CI] 0.83‐0.90) and a Model II AUC of 0.86 (95% CI 0.80‐0.90). These models indicate cognitive frailty is driven by dysregulation across multiple cellular processes including genetic alterations, nutrient and lipid metabolism, and elevated levels of circulating pro‐inflammatory proteins.DiscussionWhile our results establish a foundation for understanding the underlying biological mechanisms for the relationship between cognitive decline and physical frailty, further examination of the molecular pathways associated with our predictive biomarkers is warranted. Our framework is in alignment with other proposed biological underpinnings of Alzheimer's disease such as genetic alterations, immune system dysfunction, and neuroinflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.