Abstract

To quantitatively measure content connectivity and provide protection for different kinds of content, the concept of k-node (edge) content connectivity is proposed recently. Based on k-node (edge) content connectivity, k-node (edge) content connected elastic optical datacenter network (KC-EODN) is proposed to design disaster-resilient and spectrum-efficient optical datacenter networks. In KC-EODN, k independent end-to-content paths are established for each request. However, it will consume too much resource to assign dedicated spectrum for each end-to-content path. Spectrum sharing among multiple end-to-content paths of different requests can greatly improve resource efficiency. In this paper, a novel perfect matching based sharing principle among multiple end-to-content paths of different requests is proposed. Based on the new proposed sharing principle, we present the shared end-to-content backup path protection (SEBPP) scheme for KC-EODN. Integer linear program (ILP) model and heuristic algorithms are designed for SEBPP scheme with the objective of minimizing the total of working and backup spectrum resources. Numerical results show that the proposed SEBPP scheme can greatly reduce spectrum consumption while ensuring the survivability against natural disaster and multi-failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.