Abstract
Stroke is one of the leading causes of disability and death worldwide, a severe medical condition for which new solutions for prevention, monitoring, and adequate treatment are needed. This paper proposes a SDM framework for the development of innovative and effective solutions based on artificial intelligence in the rehabilitation of stroke patients by empowering patients to make decisions about the use of devices and applications developed in the European project ALAMEDA. To develop a predictive tool for improving disability in stroke patients, key aspects of stroke patient data collection journeys, monitored health parameters, and specific variables covering motor, physical, emotional, cognitive, and sleep status are presented. The proposed SDM model involved the training and consultation of patients, medical staff, carers, and representatives under the name of the Local Community Group. Consultation with LCG members, consists of 11 representative people, physicians, nurses, patients and caregivers, which led to the definition of a methodological framework to investigate the key aspects of monitoring the patient data collection journey for the stroke pilot, and a specific questionnaire to collect stroke patient requirements and preferences. A set of general and specific guidelines specifying the principles by which patients decide to use wearable sensing devices and specific applications resulted from the analysis of the data collected using the questionnaire. The preferences and recommendations collected from LCG members have already been implemented in this stage of ALAMEDA system design and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.