Abstract

This paper presents a shared control approach for motion compensation in robotic beating heart surgery. Motion compensation consists of three main tasks; motion synchronization, image stabilization and shared control. The paper discusses a unifying framework under which the three tasks combine seamlessly. In this work, the planar 1-manifold case is considered, where a strip-wise affine map is performed to achieve image stabilization onto a canonical space, where shared control emerges naturally. A prototype teleoperation system is also described, implementing the algorithms. Experiments were performed with medically trained users, and the positive effect of motion compensation is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call