Abstract

BackgroundWhen bipolar disorder (BD) presents as the depressive state, it is often misdiagnosed as major depressive disorder (MDD). However, few studies have focused on dynamic differences in local brain activity and connectivity between BD and MDD. Therefore, the present study explored shared and specific patterns of abnormal dynamic brain segregation and integration in BD and MDD patients. MethodsBD Patients (n = 106), MDD patients (n = 114), and 130 healthy controls (HCs) underwent resting state functional magnetic resonance imaging (fMRI). We first used a sliding window analysis to evaluate the dynamic amplitude of low-frequency fluctuations (dALFF) and, based on the altered dALFF, further analyzed the dynamic functional connectivity (dFC) using a seed-based approach. ResultsBoth the BD and MDD groups showed decreased temporal variability of the dALFF (less dynamic segregation) in the bilateral posterior cingulate cortex (PCC)/precuneus compared with the HCs. The MDD group showed increased temporal variability of the dALFF (more dynamic segregation) in the left putamen compared with the controls, but there was no significant difference between the BD and HCs. The dFC analysis also showed that both the BD and MDD groups had reduced dFC (less dynamic integration) between the bilateral PCC/ precuneus and the left inferior parietal lobule compared with the HCs. LimitationsThis study was cross-sectional and did not examine data from remitted BD and MDD patients. ConclusionOur findings indicated disrupted dynamic balance between segregation and integration within the default mode network in both BD and MDD. Moreover, we found MDD-specific abnormal brain dynamics in the putamen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call