Abstract

The automatic processing of high-dimensional mass spectrometry data is required for the clinical implementation of ambient ionization molecular profiling methods. However, complex algorithms required for the analysis of peak-rich spectra are sensitive to the quality of the input data. Therefore, an objective and quantitative indicator, insensitive to the conditions of the experiment, is currently in high demand for the automated treatment of mass spectrometric data. In this work, we demonstrate the utility of the Shapley value as an indicator of the quality of the individual mass spectrum in the classification task for human brain tumor tissue discrimination. The Shapley values are calculated on the training set of glioblastoma and nontumor pathological tissues spectra and used as feedback to create a random forest regression model to estimate the contributions for all spectra of each specimen. As a result, it is shown that the implementation of Shapley values significantly accelerates the data analysis of negative mode mass spectrometry data alongside simultaneous improving the regression models’ accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call