Abstract

We study driven atomic Josephson junctions realized by coupling two two-dimensional atomic clouds with a tunneling barrier. By moving the barrier at a constant velocity, dc and ac Josephson regimes are characterized by a zero and nonzero atomic density difference across the junction, respectively. Here, we monitor the dynamics resulting in the system when, in addition to the above constant velocity protocol, the position of the barrier is periodically driven. We demonstrate that the time-averaged particle imbalance features a plateau behavior that is the analog of Shapiro steps observed in driven superconducting Josephson junctions. The underlying dynamics reveals an intriguing interplay of the vortex and phonon excitations, where Shapiro steps are induced via suppression of vortex growth. We study the system with a classical-field dynamics method, and benchmark our findings with a driven circuit dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.