Abstract

The root system commonly lies underground, where it provides anchorage for the aerial organs, as well as nutrients and water. Both endogenous and environmental cues contribute to the establishment of the root system. Among the endogenous cues, microRNAs (miRNAs), transcription factors, and phytohormones modulate root architecture. miRNAs belong to a subset of endogenous hairpin-derived small RNAs that post-transcriptionally control target gene expression, mostly transcription factors, comprising the miRNA regulatory hubs. Phytohormones are signaling molecules involved in most developmental processes. Some miRNAs and targets participate in more than one hormonal pathway, thereby providing new bridges in plant hormonal crosstalk. Unraveling the intricate network of molecular mechanisms underlying the establishment of root systems is a central aspect in the development of novel strategies for plant breeding to increase yield and optimize agricultural land use. In this review, we summarize recent findings describing the molecular mechanisms associated with the interplay between miRNA regulatory hubs and phytohormones to ensure the establishment of a proper root system. We focus on post-embryonic growth and development of primary, lateral, and adventitious roots. In addition, we discuss novel insights for future research on the interaction between miRNAs and phytohormones in root architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.