Abstract

Given that wind energy is a key solution in fighting against global warming emissions arising from human activities, the interest for developing more powerful wind turbines has become nowadays a challenging area to research and innovation for the wind-turbine industry worldwide. As the electric power supplied by the wind turbine is directly related to the size of its blades: the larger the size of blades the more energy is captured, new design and manufacturing strategies of these critical components, using advanced fibre-reinforced composites such as carbon nanotubes (CNTs) and resin transfer moulding (RTM) process, have become a major focus for manufacturers and competitors of wind turbines. In this perspective, the outcomes presented in this paper can be exploited by the modern wind turbine industry with the aim of developing reliable, efficient and cost-effective rotor blades that are capable to withstand, without adverse effects, severe static and/or dynamic loading to which they may be exposed during their lifetime. As part of long-term strategic plans, CNTs offer the required criteria to help researchers design and manufacture 200 m rotor blades for 50 MW turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.