Abstract

Coherent generated self-imaging bottle beams, typically formed by interfering two coherent quasi-Bessel beams, possess a periodic array of intensity maxima and minima along their axial direction. In practice, the overall quality of the self-repeating intensity patterns is prone to unresolved large intensity variations. In this Letter, we increased consistency of intensity of self-imaging bottle beams through a spatial frequency optimization routine. By doing so, we increased the effective length of self-imaging bottle beams by 74%. Further, we showed that this approach is applicable to higher-order self-imaging beams that display complex intensity structures. The enhancement in these modified self-imaging beams could play a significant role in optical trapping, imaging, and lithography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call