Abstract

CeO2 is attracting more and more attention because of its outstanding performance in heterogeneous catalysis, as an active support and a reaction promoter in reactions of industrial interest. We herein describe a novel and scalable manufacturing process of mm-sized CeO2 spheres by a combination of extrusion and spheronization of CeO2 porous powders. In this study, wet paste formulation and fabrication procedures were optimized, and as a result methylcellulose was identified as the best plasticizer for paste extrusion to provide well-defined spherical shapes and smooth surfaces, as well as reproducible batches. After nickel impregnation (10 wt %), the catalytic performance of CeO2 supports was evaluated in the CO2 methanation reaction (T = 250-350 °C, P = 5 bar·g) and compared with that of commercial Al2O3 spheres doped or not with CeO2. These novel CeO2-based catalysts are easily reduced at a moderate temperature and more active than the Al2O3 analogues, particularly at low reaction temperatures and small reactor volumes, properties that make their implementation in emerging reactor configurations very promising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call