Abstract

BackgroundThe use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, Ekso™, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms.MethodsWe enrolled forty patients in a prospective, pre-post, randomized clinical study. Twenty patients underwent Ekso™ gait training (EGT) (45-min/session, five times/week), in addition to overground gait therapy, whilst 20 patients practiced an OGT of the same duration. All individuals were evaluated about gait performance (10 m walking test), gait cycle, muscle activation pattern (by recording surface electromyography from lower limb muscles), frontoparietal effective connectivity (FPEC) by using EEG, cortico-spinal excitability (CSE), and sensory-motor integration (SMI) from both primary motor areas by using Transcranial Magnetic Stimulation paradigm before and after the gait training.ResultsA significant effect size was found in the EGT-induced improvement in the 10 m walking test (d = 0.9, p < 0.001), CSE in the affected side (d = 0.7, p = 0.001), SMI in the affected side (d = 0.5, p = 0.03), overall gait quality (d = 0.8, p = 0.001), hip and knee muscle activation (d = 0.8, p = 0.001), and FPEC (d = 0.8, p = 0.001). The strengthening of FPEC (r = 0.601, p < 0.001), the increase of SMI in the affected side (r = 0.554, p < 0.001), and the decrease of SMI in the unaffected side (r = − 0.540, p < 0.001) were the most important factors correlated with the clinical improvement.ConclusionsEkso™ gait training seems promising in gait rehabilitation for post-stroke patients, besides OGT. Our study proposes a putative neurophysiological basis supporting Ekso™ after-effects. This knowledge may be useful to plan highly patient-tailored gait rehabilitation protocols.Trial registrationClinicalTrials.gov, NCT03162263.

Highlights

  • The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach

  • All participants completed the training without any significant adverse events, except a mild skin bleachable erythema at the thigh and shank strap locations in seven patients of the EksoTM gait training (EGT)

  • Patients belonging to EGT group got all primary outcomes, whereas those belonging to overground gait training (OGT) got only an Minimal Detectable Change (MDC)

Read more

Summary

Introduction

The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, EksoTM, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms. Patients with stroke receiving intensive gait training with or without body weight support (BWS) may not improve in walking ability more than those who are not receiving the same treatment (with the exception of walking speed and endurance) [2,3,4,5]. Neurorobotic devices, including robotic-assisted gait training (RAGT) with BWS, result in a more likely achievement of independent walking when coupled with overground gait training (OGT) in patients with stroke. RAGT requires a more active subject participation in gait training as compared to the traditional OGT, which is a vital feature of gait rehabilitation [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call