Abstract

Iron oxide magnetic nanoparticles (NPs) are stimuli-responsive materials at the forefront of nanomedicine. Their realistic finite temperature simulations are a formidable challenge for first-principles methods. Here, we use density functional tight binding to open up the required time and length scales and obtain global minimum structures of Fe_{3}O_{4} NPs of realistic size (1400 atoms, 2.5nm) and of different shapes, which we then refine with hybrid density functional theory methods to accomplish proper electronic and magnetic properties, which have never been accurately described in simulations. On this basis, we develop a general empirical formula and prove its predictive power for the evaluation of the total magnetic moment of Fe_{3}O_{4} NPs. By converting the total magnetic moment into the macroscopic saturation magnetization, we rationalize the experimentally observed dependence with shape. We also reveal interesting reconstruction mechanisms and unexpected patterns of charge ordering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.