Abstract

The carbon-neutral production of fuels and chemical feedstocks is one of the grand challenges for our society to solve. The electrochemical conversion of CO2 is emerging as a promising technology contributing to this goal. Despite the huge amount of progress made over the past decade, selectivity still remains a challenge. This Account presents an overview of recent progress in the design of selective catalysts by exploiting the structural sensitivity of the electrochemical CO2 reduction reaction (CO2RR). In particular, it shows that the accurate and precise control of the shape and size of Cu nanocatalysts is instrumental in understanding and in discovering the structure-selectivity relationships governing the reduction of CO2 to valuable hydrocarbons, such as methane and ethylene. It further illustrates the use of faceted Cu nanocatalysts to interrogate catalytic pathways and to increase selectivity toward oxygenates, such as ethanol, in the framework of tandem schemes. The last part of the Account highlights the role of well-defined nanocatalysts in identifying reconstruction mechanisms which might occur during operation. An outlook for the emerging paradigms which will empower the design of novel catalysts for CO2RR concludes the Account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.