Abstract

Supramolecular gels assemble via non-covalent interactions between low-molecular-weight gelators (LMWGs). The gels form a solid-like nanoscale network spanning a liquid-like continuous phase, translating molecular-scale information into materials performance. However, gels based on LMWGs are often difficult to manipulate, easily destroyed and have poor rheological performance. The recurring image of newly discovered supramolecular gels is that of an inverted vial showing that the gel can support its own weight against gravity. Such images reflect the limitation that these gels simply fill the vessel in which they are made, with limited ability to be shaped. This property prevents supramolecular gels from having the same impact as polymer gels, despite greater synthetic tunability, reversibility and bio/environmental compatibility. In this Review, we evaluate strategies for imposing different shapes onto supramolecular gels and for patterning structures within them. We review fabrication methods including moulding, self-healing, 3D printing, photopatterning, diffusion and surface-mediated patterning. We discuss gelator chemistries amenable to each method, highlighting how a multicomponent approach can aid shaping and structuring. Supramolecular gels with defined shapes, or patterned structures with precisely controlled compositions, have the potential to intervene in applications, such as tissue engineering and nanoscale electronics, as well as opening up new technologies. Supramolecular gels comprise low-molecular weight gelators that assemble by non-covalent interactions. In this Review, a range of fabrication methods, as well as strategies for shaping, structuring and patterning supramolecular gels are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call