Abstract

We study the dynamic properties of magnetic nanoelements with tapered ends by using micromagnetic simulations. It is found that the spin-wave modes can be effectively manipulated by the element shape. With the increase of the end sharpness (described by tapering parameter h), the frequency of the spin-wave edge mode increases rapidly and its oscillation areas in the both ends of element gradually increase and move toward to the central area. Finally, the edge mode completely merges into the fundamental mode. During the magnetization reversal processes, the edge mode experiences one or two softening depending on h≤60nm or 60nm<h<100nm. When h>100nm, it is the fundamental mode that goes to zero at the switching field. The evolution of the spin-wave modes reflects the change of the micromagnetic structures of the elements during the reversal. It is the softening of the edge mode that triggers the magnetization reversal in elements with h<100nm. The quasi-uniform reversal in the elements with h>100nm is induced by the softening of the fundamental mode, where the edge mode is completely suppressed. The results presented in this work demonstrate that the dynamic properties and the magnetization reversal can be effectively tuned by changing the shape of the nanoelements and may be useful for designing the nanoscale magnetic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call