Abstract
AbstractSyngas conversion by Fischer–Tropsch synthesis (FTS) is characterized by a wide distribution of hydrocarbon products ranging from one to a few carbon atoms. Reported here is that the product selectivity is effectively steered toward ethylene by employing the oxide‐zeolite (OX‐ZEO) catalyst concept with ZnCrOx‐mordenite (MOR). The selectivity of ethylene alone reaches as high as 73 % among other hydrocarbons at a 26 % CO conversion. This selectivity is significantly higher than those obtained in any other direct syngas conversion or the multistep process methanol‐to‐olefin conversion. This highly selective pathway is realized over the catalytic sites within the 8‐membered ring (8MR) side pockets of MOR via a ketene intermediate rather than methanol in the 8MR or 12MR channels. This study provides substantive evidence for a new type of syngas chemistry with ketene as the key reaction intermediate and enables extraordinary ethylene selectivity within the OX‐ZEO catalyst framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.