Abstract
We present a flexible framework for uncertainty principles in spectral graph theory. In this framework, general filter functions modeling the spatial and spectral localization of a graph signal can be incorporated. It merges several existing uncertainty relations on graphs, among others the Landau-Pollak principle describing the joint admissibility region of two projection operators, and uncertainty relations based on spectral and spatial spreads. Using theoretical and computational aspects of the numerical range of matrices, we are able to characterize and illustrate the shapes of the uncertainty curves and to study the space-frequency localization of signals inside the admissibility regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.