Abstract

Solid lipid monolayer domains surrounded by a fluid phase at an air-water interface exhibit complex shapes. These intriguing shapes can be understood in terms of a competition between line tension and long-range dipole-dipole interaction. The dipolar energy has recently been relevant to a negative line tension and a positive curvature energy at the boundary, and a corresponding shape equation was derived by the variation of the approximated domain energy (Phys. Rev. Lett. 93, 206101 (2004)). Here we further incorporate surface pressure into the shape equation and show that the equation can be analytically solved: the curvature of the domain boundary is exactly obtained as an elliptic function of arc-length. We find that a circular domain can grow into bean- and peach-like domains with pressure, i.e., dipping and cuspidal transitions of circle by compression. The comparison with the experimental observation shows nice agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.