Abstract

The solid-state shape, size, and intermolecular packing of a fifth-generation dendritic macromolecule were determined by a combination of site-specific stable-isotope-labeling, rotational-echo double-resonance (REDOR) NMR and distance-constrained molecular dynamics simulations. REDOR experiments measured dipolar couplings between 13C atoms located near the chain ends and an 19F label placed at the core of benzyl ether dendrimers (generations 1−5) based on 3,5-dihydroxybenzyl alcohol as the monomeric repeat unit. Intramolecular 13C−19F coupling was distinguished from intermolecular coupling by dilution with nonlabeled dendrimer. The average intramolecular 13C−19F distances for generations 3−5 were each approximately 12 Å, which indicates inward-folding of chain ends with increasing generation number. The average intermolecular 13C−19F dipolar coupling decreased with increasing generation number, consistent with decreased interpenetration for larger dendrimers. The measured intra- and intermolecular distances for the fifth-generation dendrimer were used as constraints on energy minimizations and molecular dynamics simulations, which resulted in visualizations of the dendrimer packing and an estimate of density in the solid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.