Abstract

AbstractThis study investigates the shapes and fall speeds of freezing and frozen raindrops through field observations using an instrument called the high-speed optical disdrometer (HOD) that we developed recently. Our field observations showed that while the shapes of all of the observed freezing raindrops and a portion of the frozen raindrops (39% of the frozen raindrops that are larger than 1.0 mm in volume equivalent diameter D) resemble the shapes of warm raindrops, majority of frozen raindrops (61% of the frozen raindrops with D > 1.0 mm) exhibited a distinct feature such as a spicule, bulge, cavity, or aggregation. Field observations of axis ratios (i.e., ratio of the vertical to horizontal chord) and fall speeds were compared with the predictions of available models. Separate empirical axis ratio parameterizations were developed for the freezing and frozen raindrops using the HOD field observations and extensions to an available shape model were also incorporated. For the fall speeds of freezing and frozen raindrops, field observations demonstrated a good agreement with the predictions of the available parameterizations. Frozen raindrops showed a larger scatter of fall speeds around the mean fall speed of a given drop size than those of the freezing raindrops due to the shape variety among the frozen raindrops with the aforementioned distinct features. The drag coefficients for the observed hydrometeors were compared with the predictions of the available drag coefficient models. Separate “drag coefficient–Reynolds number” relationships for freezing and frozen raindrops were developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call