Abstract

We start with an analysis of the configurations commonly adopted to implement linear shapers. We show that, once the ENC from the charge amplifier is defined, the dynamic range of the system is set by the voltage swing and the value of the capacitance realizing the poles. The configuration used to realize the poles has also an impact, and those configurations based on passive components in feedback are expected to offer a higher dynamic range than the ones that use both active and passive components, like scaling mirrors. Finally, we introduce the concept of delayed dissipative feedback (DDF), which consists of delaying the resistive feedbacks from the furthest available nodes along the shaping chain. We will show that, in order to implement semi-Gaussian shapers, a small capacitor in positive feedback is required. The DDF technique can overcome some of the limitations of the more classical configurations. For example, in a third order shaper a factor of two higher dynamic range can be obtained or, at equal dynamic range, about 25% of the capacitance is needed (i.e. about 30% of the area in practical cases).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.