Abstract

AbstractCardiac segmentation is an essential step for the diagnosis of cardiovascular diseases. However, pixel-wise dense labeling is both costly and time-consuming. Scribble, as a form of sparse annotation, is more accessible than full annotations. However, it’s particularly challenging to train a segmentation network with weak supervision from scribbles. To tackle this problem, we propose a new scribble-guided method for cardiac segmentation, based on the Positive-Unlabeled (PU) learning framework and global consistency regularization, and termed as ShapePU. To leverage unlabeled pixels via PU learning, we first present an Expectation-Maximization (EM) algorithm to estimate the proportion of each class in the unlabeled pixels. Given the estimated ratios, we then introduce the marginal probability maximization to identify the classes of unlabeled pixels. To exploit shape knowledge, we apply cutout operations to training images, and penalize the inconsistent segmentation results. Evaluated on two open datasets, i.e., ACDC and MSCMRseg, our scribble-supervised ShapePU surpassed the fully supervised approach respectively by 1.4% and 9.8% in average Dice, and outperformed the state-of-the-art weakly supervised and PU learning methods by large margins. Our code is available at https://github.com/BWGZK/ShapePU.KeywordsWeakly supervised learningPU learningSegmentation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.