Abstract
An explicit representation of a piecewise rational interpolant with quartic numerator and quadratic denominator is presented. For positivity data, monotone data and convex data, the shape-preserving properties of the interpolant are given. The interpolant is C2 continuous spline with a shape parameter wi on each subinterval. The values of wi to guarantee shape preservation are estimated. A convergence analysis establishes an error bound in terms of wi and shows that the interpolant is O(h2) or O(h3) accurate. Several examples are supplied to support the practical value of the given interpolation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.