Abstract
We have investigated the spectroscopic properties (absorption spectra, emission spectra, emission lifetimes) of three triads in CH(2)Cl(2): C2-M-C2, C343-M-C343, and C2-M-C343, in which M is a shape-persistent macrocyclic hexagonal backbone composed of two 2,2'-bipyridine (bpy) units embedded in opposing sides, and C2 and C343 are coumarin 2 and coumarin 343, respectively. All the components are strongly fluorescent species (Phi=0.90, 0.79, and 0.93 for M, C2, and C343, respectively, as established by investigating suitable model compounds). In each triad excitation of M leads to almost quantitative energy transfer to the lowest coumarin-localised excited state. Upon addition of acid, the two bpy units of the M component undergo independent protonation leading to monoprotonated (e.g., C2-MH(+)-C2) and diprotonated (e.g., C2-M2 H(+)-C2) species. Further addition of acid leads to protonation of the coumarin component so that each triad is involved in four protonation equilibria. Protonation causes strong (and reversible, upon addition of base) changes in the absorption and fluorescence properties of the triads because of inversion of the excited-state order and/or the occurrence of electron-transfer quenching processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.