Abstract

Single cell shape determines cellular functions. Therefore, control of cell shape is of considerable importance for the tissue engineering field. This study was designed to assess the effect of surface-induced shaping of vascular endothelial cells (ECs) on the intracellular nitric oxide (NO) production level, the cell elasticity, and cytoskeletal (CSK) features on shape-engineered ECs (round, 90, 120 microm diameter; spindle-shaped, 20, 30, 40 microm width) prepared on a photolithographically microprocessed surface. Intracellular NO production was measured using a microscopic spectrometer with diaminofluorescein diacetate probe. Cell elasticity and actin CSK features were analyzed through microindentation measurement and fluorescence observations with fluorescence and atomic force microscopy. Results showed that spindle-shaped cells exhibited lower NO production, higher cell stiffness, and denser actin stress fibers than the round and nonrestrictedly cultured control cells. Relations between cell shape with NO production, cell elasticity, and actin CSK features were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.