Abstract
This work proposes a novel shape-driven reconstruction approach for difference electrical impedance tomography (EIT). In the proposed approach, the reconstruction problem is formulated as a shape reconstruction problem and solved via an explicit and geometrical methodology, where the geometry of the embedded inclusions is represented by a shape and topology description function (STDF). To incorporate more geometry and prior information directly into the reconstruction and to provide better flexibility in the solution process, the concept of a moving morphable component (MMC) is applied here implying that MMC is treated as the basic building block of the embedded inclusions. Simulations, phantom studies, and in vivo pig data are used to test the proposed approach for the most popular biomedical application of EIT - lung imaging - and the performance is compared with the conventional linear approach. In addition, the modality's robustness is studied in cases where (i) modeling errors are caused by inhomogeneity in the background conductivity, and (ii) uncertainties in the contact impedances and reference state are present. The results of this work indicate that the proposed approach is tolerant to modeling errors and is fairly robust to typical EIT uncertainties, producing greatly improved image quality compared to the conventional linear approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.