Abstract

This paper investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The system is decomposed into four steps: locating, segmenting, characterizing, and classifying clusters of 3D points. Specifically, we first cluster nearby points to form a set of potential object locations (with hierarchical clustering). Then, we segment points near those locations into foreground and background sets (with a graph-cut algorithm). Next, we build a feature vector for each point cluster (based on both its shape and its context). Finally, we label the feature vectors using a classifier trained on a set of manually labeled objects. The paper presents several alternative methods for each step. We quantitatively evaluate the system and tradeoffs of different alternatives in a truthed part of a scan of Ottawa that contains approximately 100 million points and 1000 objects of interest. Then, we use this truth data as a training set to recognize objects amidst approximately 1 billion points of the remainder of the Ottawa scan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.