Abstract

Camera view invariant 3-D object retrieval is an important issue in many traditional and emerging applications such as security, surveillance, computer-aided design (CAD), virtual reality, and place recognition. One straightforward method for camera view invariant 3-D object retrieval is to consider all the possible camera views of 3-D objects. However, capturing and maintaining such views require an enormous amount of time and labor. In addition, all camera views should be indexed for reasonable retrieval performance, which requires extra storage space and maintenance overhead. In the case of shape-based 3-D object retrieval, such overhead could be relieved by considering the symmetric shape feature of most objects. In this paper, we propose a new shape-based indexing and matching scheme of real or rendered 3-D objects for camera view invariant object retrieval. In particular, in order to remove redundant camera views to be indexed, we propose a camera view skimming scheme, which includes: i) mirror shape pairing and ii) camera view pruning according to the symmetrical patterns of object shapes. Since our camera view skimming scheme considerably reduces the number of camera views to be indexed, it could relieve the storage requirement and improve the matching speed without sacrificing retrieval accuracy. Through various experiments, we show that our proposed scheme can achieve excellent performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.