Abstract

When dynamical systems that produce rhythmic behaviors operate within hard limits, they may exhibit limit cycles with sliding components, that is, closed isolated periodic orbits that make and break contact with a constraint surface. Examples include heel-ground interaction in locomotion, firing rate rectification in neural networks, and stick-slip oscillators. In many rhythmic systems, robustness against external perturbations involves response of both the shape and the timing of the limit cycle trajectory. The existing methods of infinitesimal phase response curve (iPRC) and variational analysis are well established for quantifying changes in timing and shape, respectively, for smooth systems. These tools have recently been extended to nonsmooth dynamics with transversal crossing boundaries. In this work, we further extend the iPRC method to nonsmooth systems with sliding components, which enables us to make predictions about the synchronization properties of weakly coupled stick-slip oscillators. We observe a new feature of the isochrons in a planar limit cycle with hard sliding boundaries: a nonsmooth kink in the asymptotic phase function, originating from the point at which the limit cycle smoothly departs the constraint surface, and propagating away from the hard boundary into the interior of the domain. Moreover, the classical variational analysis neglects timing information and is restricted to instantaneous perturbations. By defining the "infinitesimal shape response curve" (iSRC), we incorporate timing sensitivity of an oscillator to describe the shape response of this oscillator to parametric perturbations. In order to extract timing information, we also develop a "local timing response curve" (lTRC) that measures the timing sensitivity of a limit cycle within any given region. We demonstrate in a specific example that taking into account local timing sensitivity in a nonsmooth system greatly improves the accuracy of the iSRC over global timing analysis given by the iPRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call