Abstract

The tunable energy gap and distinctive layered configuration of transition metal dichalcogenides (TMDs) has sparked considerable interest in their capabilities for electromagnetic wave absorption. As a significant TMD, vanadium selenide (VSe2) is characterized by a superior electrical conductivity (1 × 10-3 S/m) and an expanded interlayer distance, which are advantageous for electromagnetic wave absorption performance. Nevertheless, the current research on VSe2 in electromagnetic wave absorption is relatively limited. In this study, flower-like VSe2 and shape-tunable VSe2/reduced graphene oxide (rGO) composites were fabricated via a simple solvothermal method, and the effect of their morphology on electromagnetic wave absorption performances was investigated. The VSe2/rGO composites exhibited remarkable electromagnetic wave absorption properties at a thickness of 2.01 mm, with a reflection loss value (RL) of up to -79.50 dB, and an effective absorption bandwidth (EAB) of 5.2 GHz (1.45 mm). This research has identified a novel approach to the study of TMDs in the field of electromagnetic wave absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.