Abstract

Recent developments in the field of polymer vesicles, i.e. polymersomes, have demonstrated that disrupting the equilibrium conditions of the milieu could lead to shape transformation into stable non-spherical morphologies, bringing on-demand shape control to reality and bearing great promise for cell mimicry and a variety of biomedical applications. Here, we studied the self-assembly behavior of glassy amphiphilic triblock copolymers, poly(ethylene glycol)-block-polystyrene-stat-poly(coumarin methacrylate)-block-poly(ethylene glycol) (PEG-b-P(S-stat-CMA)-b-PEG), and their response to various stimuli. By changing the respective molecular weights of both the hydrophobic P(S-stat-CMA) and the hydrophilic PEG blocks, we varied the hydrophobic volume fraction thereby accessing a range of morphologies from spherical and worm-like micelles, as well as polymersomes. For the latter, we observed that slow osmotic pressure changes induced by dialysis led to a decrease in size while rapid osmotic pressure changes by addition of a PEG fusogen led to morphological transformations into rod-like and tubular polymersomes. We also found out that chemically crosslinking the vesicles before inducing osmotic pressure changes led to the vesicles exhibiting hypotonic shock, atypical for glassy polymersomes. We believe that this approach combining the robustness of triblock copolymers and light-based transformations will help expand the toolbox to design ever more complex biomimetic constructs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.