Abstract

Giant unilamellar phospholipid vesicles were prepared by the method of electroformation from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). We studied the influence of different concentrations of the surfactant octaethyleneglycol dodecylether (C 12E 8) on the spontaneous shape transformations of POPC vesicles at room temperature. In accordance with previous results, we observed that low concentration of C 12E 8 increased the speed of the characteristic vesicle shape transformation, starting from the initial shape with thin tubular protrusion, through beaded protrusion where the number of beads gradually decreased, to final spherical shapes with invagination, whereby the average mean curvature of the vesicle membrane monotonously decreased. In contrast, higher concentration of C 12E 8 initially induced the shape transformation in the “opposite direction”: in the protrusion, the number of beads gradually increased and eventually a tube was formed whereby the average mean curvature of the vesicle membrane gradually increased. However, at a certain point, an abrupt shape change took place to yield the vesicle with invagination. In this transition, the average mean curvature of the vesicle membrane discontinuously decreased. After this transition, the vesicle began to shrink and finally disappeared. We discuss possible mechanisms involved in the observed transformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call