Abstract

AbstractIn tumor therapy, nanodrug delivery systems have gained momentum in the last decade. However, its efficacy remains insufficient for clinical applications. The physical properties of nanoparticles, including size, shape, and surface characteristics, can strongly affect the delivery efficacy. Ironically, research on shape function is relatively scarce, although the nanoparticle shape greatly impacts their performance; for example, nanorods with a high aspect ratio (AR) achieve greater accumulation, but their penetration is relatively weak. Hence, rather than selecting a suitable AR to balance them, the strategy of a transformable AR (i.e., transformation) is ideal in this case. Nanoparticle transformation can be achieved by either internal stimuli (such as pH and enzymes) or external stimuli (such as light) spatially and temporally with precision, thereby dramatically enhancing the efficiency of drug delivery. Thus, nanoparticle transformation is becoming a promising prospect for improving cancer treatment. In this review, first, the effect of shape on drug delivery is summarized, then, the recently transformable drug delivery systems are reviewed, and finally, the future direction of shape‐transformable nanoparticles in tumor therapy is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call