Abstract
Electrochemical energy storage devices herald a brighter future, offering efficient and sustainable solutions to meet the escalating global energy demands. The current work investigates the development and characterization of different ceria nanostructures (nanorod, nanocube, and nanopolyhedra) as effective electrode materials for supercapacitor applications. The electrode materials are systematically characterized using various spectroscopic and non-spectroscopic techniques. Galvanostatic charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry techniques are used to evaluate the electrochemical performance of the electrode materials. The optimum material for the said application is cerium nanorod which has the maximum specific capacitance of 437.27 F/g in acid electrolytes. The current-voltage (I-V) characteristics of the ceria nanostructures exhibit hysteresis behavior; ceria nanorod showing coexistence of memristive and memcapacitive nature. The loop area of the hysteresis curve, derived from the ratio of OFF resistance to ON resistance (ROFF/RON) at 4 V, yields approximate values of 1.08, 1.33, and 1.57 for ceria nanocubes, ceria nanopolyhedra, and ceria nanorods, respectively. Impedance vs. frequency analysis of the samples was also carried out to study their electrical and transport properties. The results obtained from electrochemical analyses are complimented by electrical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.