Abstract

We have investigated the impact of microsolvation on shape-type resonance states of nucleobases, taking cytosine as a case study. To characterize the resonance position and decay width of the metastable states, we employed the newly developed DLPNO-based EA-EOM-CCSD method in conjunction with the resonance via Padé (RVP) method. Our calculations show that the presence of water molecules causes a redshift in the resonance position and an increase in the lifetime for the three lowest-lying resonance states of cytosine. Furthermore, there are some indications that the lowest resonance state in isolated cytosine may get converted to a bound state in the presence of an aqueous environment. The obtained results are extremely sensitive to the basis set used for the calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call