Abstract

ABSTRACTA novel liquid crystal elastomer (LCE) synthesized by melt polymerization, which exhibits the capacity of shape memory, is reported here for the first time. The method of synthesize the shape memory LCE has been explored. A facile two‐step method to synthesize these anisotropic materials to realize reversible shape change behavior is reported. The first reaction is the addition of nematic liquid crystal molecules to form a kind of liquid crystal polymer. Subsequently, the polymer is crosslinked to trap the order of the liquid crystal into a crosslinked LCE. The LCE exhibits liquid crystalline behavior which has shape memory with excellent fixity and recovery. Its shape memory and actuating properties also have been studied. When reheating the LCE to 165 °C, the shape will recover. The main chains and crosslinked bonds of the LCE contain ester groups, which are sensitive to alkaline and acidic condition. It turns out that the LCE is intact under acidic condition, but it can be degraded under alkaline condition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 389–394

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.