Abstract

In this work, we propose a new shape reconstruction framework rooted in the concept of Boolean operations for electrical impedance tomography (EIT). Within the framework, the evolution of inclusion shapes and topologies are simultaneously estimated through an explicit boundary description. For this, we use B-spline curves as basic shape primitives for shape reconstruction and topology optimization. The effectiveness of the proposed approach is demonstrated using simulated and experimentally-obtained data (testing EIT lung imaging). In the study, improved preservation of sharp features is observed when employing the proposed approach relative to the recently developed moving morphable components-based approach. In addition, robustness studies of the proposed approach considering background inhomogeneity and differing numbers of B-spline curve control points are performed. It is found that the proposed approach is tolerant to modeling errors caused by background inhomogeneity and is also quite robust to the selection of control points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.