Abstract
AbstractThe ability of automatically reconstructing physiological shapes, of generating computational meshes, and of calculating flow solutions from medical images is enabling the introduction of computational fluid dynamics (CFD) techniques as an additional tool to aid clinical practice.This article presents a set of procedures for the shape reconstruction and triangulation of geometries derived from a set of medical images representing planar cross sections of the object. The reconstruction of the shape of the boundary is based on the interpolation of an implicit function through a set of points obtained from the segmentation of the images. This approach is favoured for its ability of smoothly interpolating between sections of different topology. The boundary of the object is an iso‐surface of the implicit function that is approximated by a triangulation extracted by the method of marching cubes. The quality of this triangulation is often neither suitable for mesh generation nor for flow solution. We discuss the use of mesh enhancement techniques to maximize the quality of the triangulation together with curvature adaption to optimize mesh resolution.The proposed methodology is applied to the reconstruction and discretization of two physiological geometries: a femoral by‐pass graft and a nasal cavity. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.