Abstract

This letter presents a shape preserving incremental learning algorithm that employs a novel shape-based metric called the Fisher-Rao amplitude-phase distance (FRAPD) metric. The combined amplitude and phase distance metric is achieved on a function space from the Fisher-Rao elastic registration. We utilize an exhaustive search method for selecting the optimal parameter that captures the amplitude and phase distance contribution in FRAPD when performing a clustering process. The proposed incremental learning structure based on the shape preserving FRAPD distance metric utilizes continuously updated fault shape templates with the Karcher mean. The seamless updating of abnormal events enhances the clustering performance for power systems fault detection. The algorithm is validated using the actual data from real-time hardware-in-the-loop testbed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.