Abstract

The finite element analysis method is used to examine the influence of manufacturing-induced thermal residual stresses on the optimal shape of stiffeners in stiffened, symmetrically laminated plates. Three stiffener arrangements are studied via an optimization process in which the objective is to maximize the first natural frequency of the stiffened plate. The optimization problem is solved using the method of moving asymptotes (MMA). The numerical simulations indicate that thermal residual stresses can either cause a dispersion of stiffeners along the perimeter or a concentration around the centre. Further, the optimum fundamental frequency tends to increase with increasing temperature difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.