Abstract
ABSTRACTPreform design plays an important role in improving the material flow, mechanical properties and reducing defects for forgings with complex shapes. In this paper, a study on shape optimization of preform tools in forging of an airfoil is carried out based on a multi-island genetic algorithm combined with a metamodel technique. An optimal Latin hypercube sampling technique is employed for sampling with the expected coverage of parameter space. Finite element (FE) simulations of multistep forging processes are implemented to obtain the objective function values for evaluating the forging qualities. For facilitating the optimization process, a radial basis function surrogate model is established to predict the responses of the hot forging process to the variation of the preform tool shape. In consideration of the compromise between different optimal objectives, a set of Pareto-optimal solutions are identified by the suggested genetic algorithm to provide more selections. Finally, according to the proposed fitness function, the best solution of multi-objective optimization on the Pareto front is confirmed and the corresponding preform tool shape proves optimal performances with substantially improved forging qualities via FE validation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.